Novel Bioflocculant from Palm Oil Mill Effluent (POME) and its Potential Application

Nurul Adela Bukhari*; Nasrin Abu Bakar* and Loh Soh Kheang*

INTRODUCTION

High valued biochemicals can be harnessed from palm oil mill effluent (POME) via microbial process apart from bioenergy e.g. methane or hydrogen. The potential pollution source of POME can be transformed into business opportunities by recovering and utilising the readily available nutrients for microbial fermentation into various bio-products. This bioconversion pathway makes use of the nutrient rich organic residues in POME as a substrate for specific microorganisms to consume and grow while concurrently produce biomass and some of the targeted bio-products.

Among the various potential biochemicals to be realised, microbial-derived flocculants (bioflocculants) are at the top of the list and received great attention for scientific and biotechnological consideration. Flocculating agents including bioflocculants have been widely used in industrial processes, including water and waste water treatment, heavy metals, toxic and colour removal, synthesis of nanoparticles as well as cell removal and biomass recovery i.e. microalgae harvesting.

MICROBIAL-DERIVED FLOCCULANTS

Bioflocculants from microbial sources have great potential to replace the synthetic or chemical flocculants. Although chemical flocculants have high flocculation efficiency and are low in cost, they pose severe drawback especially on human health as the monomers in used are neurogenic and carcinogenic. Bioflocculants have been well received globally because they are biologically active, environmental-friendly and safe for the ecosystem. However, the cultivation cost and low production yield of bioflocculants have hindered their practical applications.

* Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. E-mail: adela@mpob.gov.my
Low-cost renewable raw materials should be explored as an alternative to the commonly used substrates such as glucose, fructose, sucrose and L-glutamate. The use of nutrient rich waste material as a substrate for culturing the bioflocculant-producing microorganisms not only can reduce the production cost but also improve the feasibility of commercial production of bioflocculant. Various types of organic wastewater sourced from soybean juice, fishmeal, dairy, brewery, and starch have been attempted for bioflocculant production to lower their production cost. The utilisation of the by-products from the palm oil milling process e.g. POME is seen to be promising in reducing the production cost and improve the feasibility of commercial bioflocculant production.

BIOFLOCCULANT-PRODUCING BACTERIA FROM POME

Several strains of bioflocculant-producing bacteria were isolated from POME samples. They were screened for their capabilities to produce bioflocculant using kaolin clay as indicator. One such isolate showing the highest flocculating rate was selected and identified using 16S rRNA sequencing. The strain was designated as *Bacillus marisflavi* NA8 (Nurul Adela et al., 2015). It is a gram-positive and rod-shaped bacteria (bacillus) capable of utilising the hydrolysed POME i.e. POME hydrolysate as a carbon source for bioflocculant production.

BIOCONVERSION OF POME INTO BIOFLOCCULANT

Generally, conversion of POME into bioflocculant involves three main processes (Figure 1): pre-treatment or substrate hydrolysis, fermentation and downstream processing i.e. separation/extraction of the targeted product.

- **Hydrolysis** – POME was first hydrolysed to simple sugars to facilitate the bacterial fermentation using a recombinant cellulase enzyme. The optimisation of POME hydrolysis to produce the fermentable sugars was carried out and a suitable fermentation medium i.e. POME hydrolysate was developed.

- **Fermentation** – The optimum culture conditions for bioflocculant production from POME hydrolysate was carried out by manipulating several process parameters - pH, temperature, inoculum size and nitrogen source in a shake flask. The highest flocculating activity was reached at 37°C in a neutral medium (pH 7.0). 5 to 10% (v/v) of *B. marisflavi* NA8 inoculated in the POME medium gave the highest flocculating activity. The strain could efficiently produce bioflocculant using POME hydrolysate without having to add nitrogen as nutrient supplement. This implied that POME alone was a protein medium enriched sufficient for microbial growth. The suitability of

![Figure 1. Typical steps for microbial conversion.](image-url)
POME for *B. marisflavi* NA8 to survive in and the adaptability performed by this strain could largely reduce the production cost of bioflocculant (Nurul Adela *et al.*, 2016).

The bioflocculant production from POME was up-scaled using a 5 litre\(^{-1}\) bioreactor (Minifors\(^\text{TM}\), Infors AG) with a 3 litre\(^{-1}\) working volume. The bioreactor was equipped with control modules to monitor the agitation, air flow, dissolved oxygen, pH and temperature. Temperature was maintained at 37ºC, and the pH controlled at 7.0 by automatically adding 30% (w/w) NH\(_4\)OH and 5 M H\(_2\)SO\(_4\) during the entire course of fermentation. Agitation was cascaded between 200 and 600 rpm. Rate of aeration was held at 1.0 vvm. IRIS (Infors AG) software was employed to monitor and record all available fermentation parameters in real time.

- **Extraction** – The fermentation broth was extracted using a centrifuge to remove bacterial cells followed by cold ethanol precipitation to separate the bioflocculant from the water.

From 1 litre of culture broth, an estimated 9.72 g of bioflocculant could be obtained. Using this finding, a total of 49 kg bioflocculant can be obtained from 1 t of POME. The estimated potential production from a 60 t hr\(^{-1}\) palm oil mill is about 11 800 t of bioflocculant in a year.

CHARACTERISTICS OF BIOFLOCCULANT

The main characteristics of the produced bioflocculant are:

- Comprises 74% polysaccharide and 25% protein with 1% nucleic acid;
- Its elemental weight fractions are: C (29.6 ± 2.9%), H (6.4 ± 0.6%), N (4.5 ± 0.2%) and S (0.7± 0.04%) (relative weight percentage);
- The major functional groups identified by FTIR analysis are hydroxyl (-OH), amino (NH\(_2\)), carbonyl (C=O) and carboxyl (COOH) groups;
- It degrades mainly at 125ºC by the thermogravimetric analysis (TGA);
- It is thermostable and tolerant of extreme pH.

APPLICATION OF BIOFLOCCULANT

It is anticipated that the produced bioflocculant would precipitate suspended solids; in this case, its ability to aggregate microalgae cells during harvesting could be possible. When comparing the effectiveness of the produced bioflocculant with the chemical flocculant *i.e.* polyaluminium chloride (PAC), it was found that the produced bioflocculant was more efficient than PAC. At a lower dose (100 mg litre\(^{-1}\)), it was able to precipitate ~60% of *Chlorella vulgaris* UMACC283 (Loh *et al.*, 2017); while the PAC required >500 mg litre\(^{-1}\) to achieve the same result. This finding suggested that the produced bioflocculant could potentially be an alternative to many inorganic and synthetic flocculants. Table 1 shows the summary of various microbial-derived bioflocculants and their functions.

CONCLUSION

POME has been demonstrated as a suitable medium for bioflocculant production. The production of bioflocculant from POME provides both the environmental and economic benefits. This value-addition hopefully can change the negative perception of POME as being polluting. The produced bioflocculant showed higher efficiency in precipitating microalgae than the conventionally-employed flocculants. With its high stability across a broad temperature and pH range, as well as its biodegradability, this POME-derived bioflocculant could be an attractive low-cost candidate for further exploitation in other industrial processes.
TABLE 1. APPLICATION OF MICROBIAL-DERIVED BIOFLOCCULANTS

<table>
<thead>
<tr>
<th>Application</th>
<th>Remarks/examples</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water treatment</td>
<td>Bioflocculant from Bacillus licheniformis used for drinking water treatment</td>
<td>Li et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Bacillus subtilis, Exiguobacterium acetylicum, Klebsiella terrigena, Staphylococcus aureus, Pseudomonas pseudaeruginosa and Pseudomonas pleocoglossicida to treat river water turbidity</td>
<td>Buthelezi et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa and Pseudomonas putida able to remove natural organic matters in river water</td>
<td>Wang et al. (2012)</td>
</tr>
<tr>
<td>Wastewater treatment</td>
<td>Bioflocculant from Serratia ficaria applicable to treat different industrial wastewater i.e. brewery, soy a sauce brewing, meat processing, pulp and paper</td>
<td>Gong et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Bacillus mucilaginosus able to remove 85% of COD and 68.5% of SS from starch wastewater</td>
<td>Deng et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>Bacillus mucilaginosus used to treat municipal, brewage, and pharmaceutical wastewater</td>
<td>Lian et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>Paenibacillus elgii B69 removed 68% of COD and 83% of turbidity</td>
<td>Li et al. (2013)</td>
</tr>
<tr>
<td>Colour removal from wastewater</td>
<td>Bioflocculant from Bacillus, Exiguobacterium, Klebsiella, Pseudomonas and Staphylococcus to decolorize dye (basic fushine) and Chromium</td>
<td>Buthelezi (2008)</td>
</tr>
<tr>
<td></td>
<td>Klebsiella mobilis were efficient in flocculating some disperse dyes</td>
<td>Wang et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Proteus mirabilis were effective in hazardous dye (basic blue 54) removal</td>
<td>Zhang et al. (2009)</td>
</tr>
<tr>
<td>Metal removal</td>
<td>A significant removal of Pb$^{2+}$, Zn$^{2+}$, and Hg$^{2+}$ by bioflocculant from Bacillus, Halomonas, Pseudomonas and Paenibacillus</td>
<td>Lin and Harichund (2011)</td>
</tr>
<tr>
<td></td>
<td>Removal of Pb$^{2+}$, Cu$^{2+}$, and Zn$^{2+}$ by Bacillus subtilis</td>
<td>Mikutta et al. (2012)</td>
</tr>
<tr>
<td>Toxic organic compound removal</td>
<td>Polycyclic aromatic hydrocarbon (PAHs) degradation removal</td>
<td>Zhang et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Zooglea sp. and Aspergillus niger degraded 30% of pyrene</td>
<td>Jia et al. (2011)</td>
</tr>
<tr>
<td>Synthesis of nanoparticles</td>
<td>Nano-scale silver can be synthesised in reverse micelles using bioflocculant Bacillus subtilis MSBN17 as stabiliser</td>
<td>Sathiyanarayanan et al. (2013)</td>
</tr>
<tr>
<td>Microalgae harvesting</td>
<td>Microalgae Nannochloropsis oceanica DUT01 and Chlorella minutissima UTEX2341 harvested using bioflocculant from Solibacillus silvestris W01</td>
<td>Wan et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Microalgae C. minutissima UTEX2341 harvested using bioflocculant from Bacillus agaradhaerens C9</td>
<td>Liu et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Microalgae Chlorella vulgaris UMAC283 harvested using bioflocculant from Bacillus marisflavi NA8</td>
<td>This study</td>
</tr>
</tbody>
</table>

Note: COD = chemical oxygen demand, SS = suspended solids.
ACKNOWLEDGEMENT

This work was supported by the Malaysian Palm Oil Board (MPOB). Thanks are also extended to the Malaysia Genome Institute (MGI) for providing the enzyme under research fund from Ministry of Agriculture No. TF0310F086. The technical assistance provided by the interns and the staff of the Energy and Environment Unit of MPOB are also deeply appreciated.

REFERENCES

